The Effects of Cytokinin and Light on Hypocotyl Elongation in Arabidopsis Seedlings Are Independent and Additive.

نویسندگان

  • W. Su
  • S. H. Howell
چکیده

Cytokinin has been reported to mimic some of the effects of light on de-etiolation responses in dark-grown Arabidopsis seedlings. The interaction between cytokinin and light was examined by analyzing cytokinin dose and light fluence effects on hypocotyl elongation in wild-type and mutant Arabidopsis seedlings with defects in light or hormone responses. It was found that (a) cytokinin and light-response systems have independent and additive effects on the inhibition of hypocotyl elongation and (b) either cytokinin or light can saturate the morphogenic responses. As a consequence, cytokinin has no effect on hypocotyl elongation under normal growth conditions because light levels saturate the hypocotyl inhibition response. To determine whether a functional light-response pathway is required for cytokinin responses, light-insensitive long hypocotyl (hy) mutants were tested for cytokinin responses. The hy mutants (hy1 to hy6) had normal cytokinin responses, except phyB-1 (hy3-1), in which hypocotyl elongation was insensitive to cytokinin. Cytokinin insensitivity in phyB-1 was attributed to an indirect effect of the mutation on cytokinin responses. The effects of cytokinin on the inhibition of hypocotyl elongation are largely mediated by ethylene, and blocking the ethylene-response pathway through the action of a cytokinin-resistant, ethylene-insensitive mutant (ckr1/ein2) had no effect on the light inhibition of hypocotyl elongation. These results do not support the idea that cytokinin mediates the action of light on hypocotyl elongation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytokinin, acting through ethylene, restores gravitropism to Arabidopsis seedlings grown under red light.

Cytokinin replaces light in several aspects of the photomorphogenesis of dicot seedlings. Arabidopsis thaliana seedlings grown under red light have been shown to become disoriented, losing the negative hypocotyl gravitropism that has been observed in seedlings grown in darkness or white light. We report here that cytokinin at micromolar concentrations restores gravitropism to seedlings grown un...

متن کامل

Identification and Functional Characterization of Arabidopsis icl Mutant Under Trehalose Feeding in Light and Dark Conditions

Trehalose is a non-reducing sugar that plays an important role in plant growth and development. To study the role of trehalose on lipid metabolism and gluconeogenesis, Arabidopsis thaliana wild type (WT) and TreF (a line expressing trehalase) were grown on ½ MS medium with or without 100 mM sucrose and or trehalose in light or continuous darkness. In dark, trehalose leads skotomorphoge...

متن کامل

Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings.

Plant morphogenesis is dependent on a tight control of cell division and expansion. Cell elongation during post-embryonic hypocotyl growth is under the control of a light-regulated developmental switch. Light is generally believed to exert its effects on hypocotyl elongation through a phytochrome-and blue-light receptor-mediated inhibitory action on a so far unknown cell elongation mechanism. W...

متن کامل

Hormonal interactions in the control of Arabidopsis hypocotyl elongation.

The Arabidopsis hypocotyl, together with hormone mutants and chemical inhibitors, was used to study the role of auxin in cell elongation and its possible interactions with ethylene and gibberellin. When wild-type Arabidopsis seedlings were grown on media containing a range of auxin concentrations, hypocotyl growth was inhibited. However, when axr1-12 and 35S-iaaL (which have reduced auxin respo...

متن کامل

A Role for Cytokinins in De-Etiolation in Arabidopsis (det Mutants Have an Altered Response to Cytokinins).

When grown in the absence of light, Arabidopsis thaliana deetiolated (det) mutants develop many of the characteristics of light-grown plants, including the development of leaves and chloroplasts, the inhibition of hypocotyl growth elongation, and elevated expression levels of light-regulated genes. We show here that dark-grown wild-type seedlings exhibit similar phenotypic traits if any one of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 108 4  شماره 

صفحات  -

تاریخ انتشار 1995